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Background

•South Africa produces in excess of 500 000 tons p.a. of unrecyclable 

waste plastic (DST, 2014)

•Generally, plastics cannot be easily recycled if they are constituted by 

uncharacterized mixtures of different plastic types or plastic-

paper/metal combinations

•In this work we are developing and analyzing a catalytic pyrolysis 

technology that focuses on disposing of uncharacterized mixtures of 

different plastic types that is less impactful on landfill



Catalytic pyrolysis

•Pyrolysis is a thermal degradation process conducted in the absence of oxygen. 

•Catalytic pyrolysis preferred over thermal (non-catalytic) pyrolysis as it produces a higher 

quality fuel oil at a lower temperature (from about 423 K), has faster reaction times and 

produces less volatile organic pollutants suggesting a less environmentally impactful process 

(Oh et al., 2018)

•Limitations include the energy cost to attain the pyrolysis temperature, catalyst cost and low 

catalyst reuse period depending on the reactor configuration.

•Optimization of catalytic pyrolysis involves selection of suitable inexpensive catalysts, 

catalyst regeneration, process variables and reactor type, condition and configuration 

optimization. 



• Multiple reactor types have been reported on in literature at laboratory-scale and pilot-scale operations 
for the pyrolysis of waste plastic.

• The technology proposed in this work employs a unique lower pressure operation with a low-cost 
catalyst in a fluidized bed reactor (FBR) under vacuum. 

• FBRs for catalytic cracking of plastic has been reported in the literature on the laboratory scale (0.42 
kg/hr plastic pellets with reactor dimensions of 300 mm x 80mm ID) (Garforth et al., 1998; Lin et al., 
2004; Lin and Yen, 2005; Liu et al., 1999; Marcilla et al., 2007; Mastral et al., 2001, 2006; Sharratt et 
al., 1997; Williams, 1998; Yan et al., 2005). However, research into the pyrolysis of mixed plastic waste 
using catalyst is limited. 

• Advantages of FBR lies in the mixing which provides large surface area for the reaction to take place 
on the catalyst, higher efficiency of heat and mass transfer, high yield of pyrolysis oil (Gholizadeh et al., 
2020), low capital and maintenance costs, and external heating makes the reactor body easier to clean 
and load (Al-Salem et al., 2017)

Literature



• There are three parts/phases to the work presented. Phase 1: laboratory-scale vacuum pyrolysis experiments in a 
semi-batch reactor conducted for mixed plastic waste to perform catalyst screening and process temperature and 
pressure optimization. 

• The permutations considered for optimization include:

• Catalyst (none, zeolite, zinc oxide) 

• Temperatures in the range of 450-821 K 

• Pressures between 30 kPa vacuum to 101 kPa absolute 

• Pyrolysis products characterized by Gas Chromatography–Mass Spectrometry (GCMS) analysis. 

• Phase 2: A continuous pilot unit has been constructed and commissioned, with experimental conditions and 
design informed from the first phase. A series of experiments is ongoing to determine the operational limitations of 
the unit, char handling, emissions, product collection and testing. This will be presented in detail in future work.

• Phase 3: a techno-economic analysis of a 100 kg.hr-1 to-scale fluidized bed vacuum reactor was designed using 
simulation software (Aspen Plus ®) to determine if the proposed technology is cost-effective.

Methodology



Experimental setup

Figure 1: Experimental setup for lab-scale semi-batch pyrolysis measurements.
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Figure 3: Comparison of low-density liquid, wax, total liquid + wax product, char 

and gas yields for uncatalyzed and catalyzed plastic pyrolysis experiments using 

feedstock of LDPE, HDPE, and PP pellets.

Product yields from pure plastic pyrolysis



Product yields from mixed plastic pyrolysis

Figure 4: Comparison of low-density liquid, wax, total liquid + wax product, char and gas 
yields for uncatalyzed and catalyzed plastic pyrolysis experiments using mixed 

feedstock of LDPE, HDPE, and PP pellets.
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Lowest energy and CO2 usage pyrolysis runs 

Table 1. Energy usage for the plastic pyrolysis step for plastic pyrolysis 
experiments.

Experiment

Mass of 

liquid + wax 

(g)

Process 

Duration

(h)

Energy Usage (kWh)

Energy Usage per 

gram of product 

(kWh per gram of 

liquid + wax)-A

Indirect CO2 

emissions per 

gram of liquid + 

wax product 

obtained (kg CO2 

per gram)-B

Heating

(0.3 kW)

Vacuum

(0.3 kW)

Cooling

(0.3 kW)

Total

PP with 10:100 

catalyst
10.81 2.33 0.70 0.70 0.70 2.10 0.19 0.31

LDPE/HDPE/PP 

15/45/40 with 

5:100 catalyst

12.32 7.83 2.35 2.35 2.35 7.05 0.57 0.92



VOC content from emissions

Table 2. VOC content of emissions in the individual 
plastic pyrolysis experiments.

Plastic Catalyst to Feed 

Ratio

VOC Emissions 

(%)

LDPE Uncatalyzed 72.3

5:100 67.2

10:100 32.6

HDPE Uncatalyzed 82.1

5:100 69.2

10:100 74.0

PP Uncatalyzed 83.3

5:100 35.6

10:100 61.1

Plastic Composition 

(wt %)

Catalyst to Feed Ratio VOC 

Emissions 

(%)LDPE HDPE PP

15 45 40 Uncatalyzed 66.1

5:100 79.4

10:100 89.6

32 35 33 Uncatalyzed 65.8

5:100 76.5

10:100 73.2

65 20 15 Uncatalyzed 76.9

5:100 73.5

10:100 74.5

Table 3. VOC content of emissions in the mixed plastic 

pyrolysis experiments.



Gate-to-gate analysis of lab-scale process

Figure 5. Analysis for the Laboratory-Scale Plastic Pyrolysis Process.
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Figure 31: HDPE pyrolysis products (a)Char + catalyst (b)Wax 1 (c) Wax 2 (d) liquid oil



Model development

Figure 2: Model of the proposed pyrolysis process with reactor run at 723-873 K. 

 T- temperature, P- pressure, ṁ- mass flow rate, xi- mass fraction. RX1- Fluidized bed reaction, CY1- cyclone, 
HX1- Heat exchanger, FL1- Flash vessel, VP1- vacuum pump. 
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Conclusions

• HDPE pyrolysis yields 85.4 wt % liquid + wax, while a 5:100 catalyst to feed ratio reduces gaseous yields in mixed HDPE 
plastic experiments.

• PP pyrolysis (<3 hours) trades liquid + wax yield, process duration, and gas yield, with a catalyst slightly altering the liquid and 
wax composition.

• Mixed plastic pyrolysis with a 5:100 catalyst to feed ratio resembles pure plastic pyrolysis, enhancing reaction times and liquid 
+ wax yields.

• High LDPE feedstock extends process durations, with the catalyst reducing LDPE pyrolysis time but minimally impacting liquid 
+ wax yields.

• Catalyzed PP reactions yield >98% C12 to C27 components, making high PP plastic valuable for significant liquid + wax yields 
suitable for fuel blends.

• Mixed plastic pyrolysis runs show lower total VOCs with a catalyst increasing condensation efficiency for higher boiling point 
VOCs.

• Conditions with a 5:100 catalyst to feed ratio for 32/35/33 LDPE/HDPE/PP achieve an efficient balance in liquid + wax yield 
(76.6 wt %), gas yield (14.5 wt %), VOC content (76.5 wt %), and process duration (12 h 45 min), with average energy usage 
and CO2 emissions.
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