URBAN MINING OF RARE EARTH ELEMENTS FROM RARE EARTH MAGNETS -HYDROMETALLURGICAL PROCESSING

Science & innovation Department: Science and Innovation REPUBLIC OF SOUTH AFRICA

UNIVERSITY OF

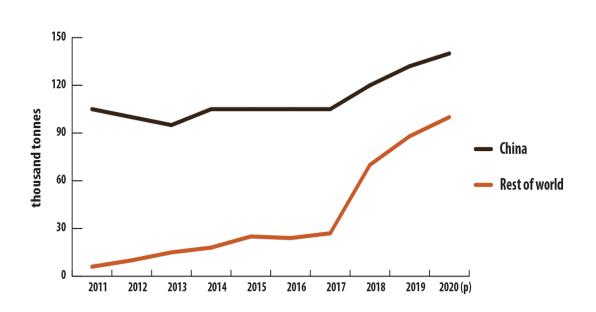
Marcin Durski, Ph.D.

University of KwaZulu-Natal, School of Engineering, Thermodynamics Research Unit South Africa

Sustainable development goals

- The 2030 Agenda
- Environment action programme to 2030
- Climate-neutral economy by 2050

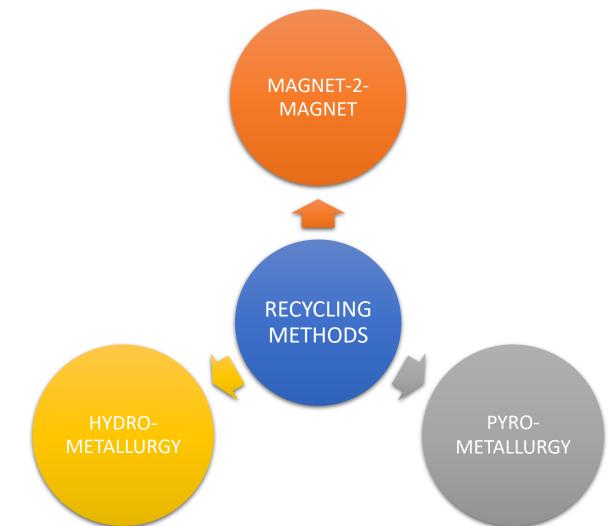
Only 12% of eWaste generated in South Africa is processed [1]


Rare Earth Elements

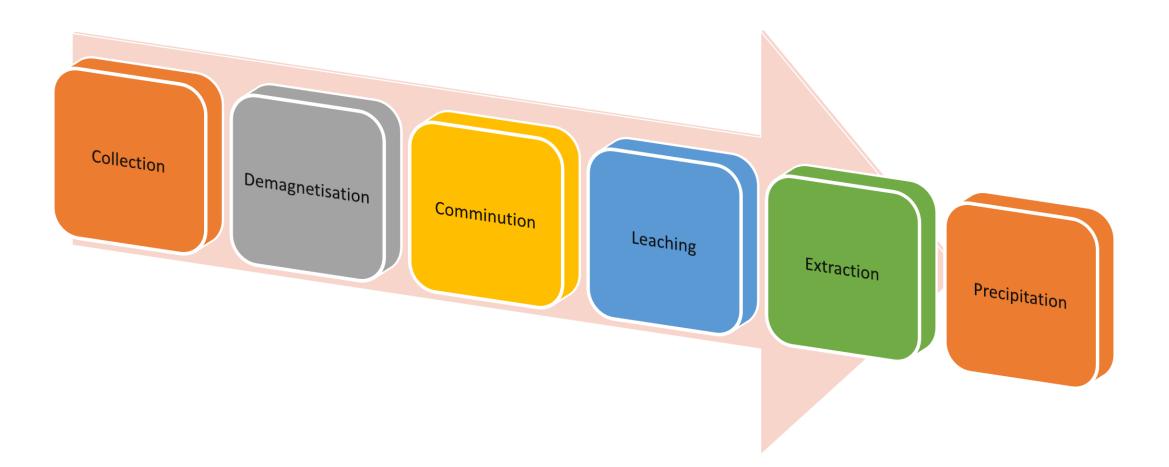
World production of REEs, by country in 2020^[2]

Country	Percentage of total production/%			
China	57.5			
United States	15.6			
Myanmar	12.3			
Australia	7.0			
Madagascar	3.3			
Other	4.2			

WasteCon


World production of REEs , 2011-2020^[2]

Methods of Waste Permanent Magnets (WPM) recycling


EUROPEAN WPM RECYCLING PLANTS^[3]

- STENA Recycling (Sweden) 6 tonnes of NdFeB powders per annum
- University of Birmingham (UK) 50 tonnes of NdFeB powders per annum
- Magneti Ljubljana (Slovenia) 50 tonnes of NdFeB powders per annum
- MIMplus Technologies (Germany) 10 tonnes of NdFeB powders per annum

 25^{th} Conference & Exhibition 18 - 20 October 2022

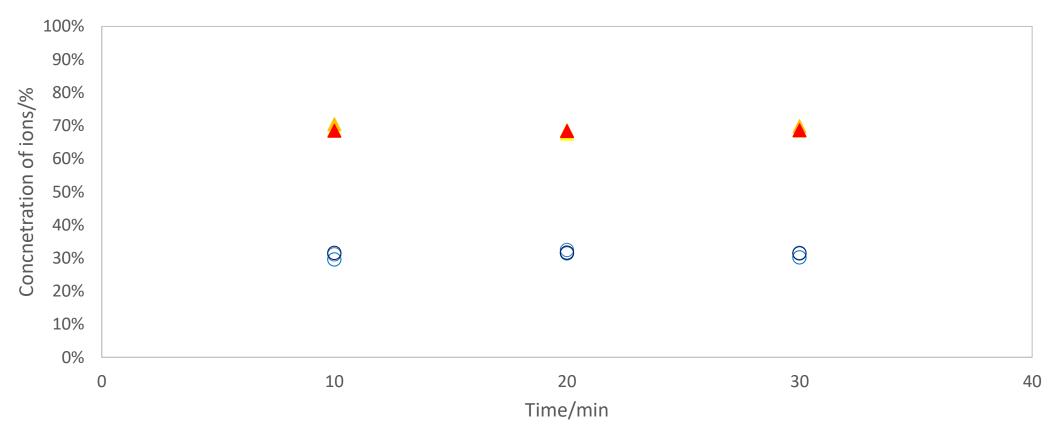
Hydrometallurgy

Hydrometallurgy – chemistry of the process

Ranges of concentrations of elements in NdFeB magnets [4,5,6]

Fe ³⁺	Nd ³⁺	Dy ³⁺	Pr ³⁺	B ³⁺	Sm ³⁺
~59-69%	~22-33%	~0.5-5%	~1-7%	~1-2.5%	~0.6-1.6%

$$\text{RE} + 3H^+X^-_{(aq)} \rightarrow RE^{3+}_{(aq)} + 3X^-_{(aq)} + 1.5H_{2(g)}$$

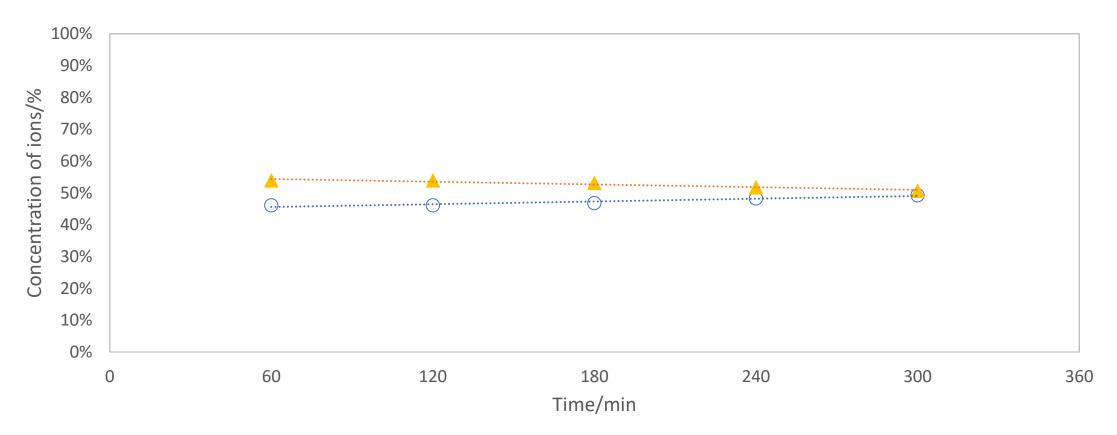

lacto[nn

Hydrometallurgy - leaching


/asteCon

Concentrations of Fe³⁺ (\land 100-150µm, \land 425-500µm, \land ≥600µm) and Nd³⁺ (\circ 100-150µm, \circ 425-500µm, \circ ≥600µm) ions in the pregnant leach solution of particle size test. 2.2M HNO₃, T = 298.15 K, t = 30 min.

Hydrometallurgy - leaching


Concentrations of Fe³⁺ (\land 2.2M HNO₃, \land 6.7M HNO₃, \land 12.3M HNO₃) and Nd³⁺ (\circ 2.2M HNO₃, \circ 6.7M HNO₃, \circ 12.3M HNO₃) ions in the pregnant leach solution of acid concentration test. Particle size = 425-500 µm, T = 298.15 K, t = 30 min.

Hydrometallurgy - leaching

lasteCon

Concentrations of Fe³⁺ (\blacktriangle) and Nd³⁺ (\circ) ions in the pregnant leach solution of contact time test. Particle size = 425-500 µm, 12.3M HNO₃, T = 298.15 K.

Hydrometallurgy – future development

- Creation of new jobs
- Reuse of the materials
- Sustainable development
- Interdisciplinary cooperation

Acknowledgments

Department: Science and Innovation REPUBLIC OF SOUTH AFRICA

Waste RDI

25th Conference & Exhibition 18 – 20 October 2022

References

[1] https://www.greencape.co.za/greencape/sector/waste (Accessed: 01.10.2022)

[2] U.S. Geological Survey, 2022, Mineral commodity summaries 2022: U.S. Geological Survey, 202 p., https://doi.org/10.3133/mcs2022

[3] https://www.susmagpro.eu/where-find-us/susmagpro-plants (Accesed: 01.10.2022)

[4] Gruber, V., & Carsky, M. (2020). New technology for lanthanide recovery from spent Nd-Fe-B magnets. *South African Journal of Chemical Engineering*, *33*, 35–38. doi: 10.1016/j.sajce.2020.04.003

[5] Lee, C.-H., Chen, Y.-J., Liao, C.-H., Popuri, S. R., Tsai, S.-L., & Hung, C.-E. (2013). Selective Leaching Process for Neodymium Recovery from Scrap Nd-Fe-B Magnet. *Metallurgical and Materials Transactions A*, 44(13), 5825–5833. doi: 10.1007/s11661-013-1924-3

[6] Reisdörfer, G., Bertuol, D., & Tanabe, E. H. (2019). Recovery of neodymium from the magnets of hard disk drives using organic acids. *Minerals Engineering*, *143*, 105938. doi: 10.1016/j.mineng.2019.105938

science & innovation

Department: Science and Innovation REPUBLIC OF SOUTH AFRICA

UNIVERSITY OF

Marcin Durski, Ph.D.

University of KwaZulu-Natal, School of Engineering, Thermodynamics Research Unit South Africa

NdFeB permanent magnets

WasteCon

Source	Fe ³⁺	Nd ³⁺	Dy ³⁺	Pr ³⁺	B ³⁺	Sm ³⁺	Reference
NdFeBmagnetpowder(75-100 μm particle size)	68.45	24.48	2.74	1.24	2.44	0.65	This work
NdFeB magnet powder (100-150 µm particle size)	67.70	23.85	2.47	3.08	2.27	0.63	This work
NdFeB magnet powder (425-500 µm particle size)	67.80	22.58	1.50	4.50	2.00	1.62	This work
NdFeB scrap magnet	59.62	31.27	-	-	1.26	-	(Lee et al., 2013)
NdFeB powder without roasting	58.50	32.36	1.00	4.38	-	-	(Reisdörfer et al., 2019)
NdFeB powder with roasting	66.69	25.19	0.72	2.96	-	-	(Reisdörfer et al., 2019)
PC HDD (before 2005)	59.40	24.44	1.39	1.85	-	-	(Gruber et al., 2020)
PC HDD (2010-2015)	61.33	25.94	2.14	0.81	-	-	(Gruber et al., 2020)
Servomotors	64.86	19.54	4.63	5.92	-	-	(Gruber et al., 2020)
Traction engine	61.15	18.76	4.05	5.72	-	-	(Gruber et al., 2020)
Magnetic separator	62.70	23.80	1.25	6.66	-	-	(Gruber et al., 2020)

