

Stellenbosch

South Africa

November

"Ways forward to promote resources equity: The role of cleaner production and circular economy as moderator. Action or Reaction to Save the Planet"

INTERNATIONAL WORKSHOP ON ADVANCES IN CLEANER PRODUCTION

Oral Presentation

Recovery of Rare Earth Elements from NdFeB Waste Magnets DURSKI, M., MANILAL, N., NAIDOO, P., MOODLEY, K

Marcin Durski **University of** KwaZulu-Natal

Estimated increase in demand for REEs

12 (J) IWACP

By 2030, more than 50% of rare-earth elements, 55% of cobalt, and 36% of nickel will be consumed by BEVs and the associated charging infrastructure ^[2]

Estimated demand increase for critical minerals according to McKinsey^[2]

^[2] The net-zero materials transition: Implications for global supply chains; McKinsey on Risk,October 2022

Global Production of REEs

^[1] Mineral commodity summaries 2022, U.S. Geological Survey

Environmental concerns

- Soil erosion
- Acidic effluents from mines
- Heavy metals pollution of bodies of water
- Decrease of biodiversity
- GHG emissions

• Negative impact on human health

Photo by Omid Roshan

Waste Permanent Magnets (WPM) recycling

EUROPEAN WPM RECYCLING PLANTS^[3]

- STENA Recycling (Sweden) 6 tonnes of NdFeB powders per annum
- University of Birmingham (UK) 50 tonnes of NdFeB powders per annum
- Magneti Ljubljana (Slovenia) 50 tonnes of NdFeB powders per annum
- MIMplus Technologies (Germany) 10 tonnes of NdFeB powders per annum

Each experiment was conducted using Ig of WPM powder in 50ml of acid

Leaching – Nd³⁺ results

Nd³⁺ ions concentration in leachate after leaching experiments with HNO₃; Particle size (filled markers - 100 - 150µm; open markers - 600 µm): • – 45°C in 6.7M acid, \blacksquare – 60°C in 6.7M acid, \blacklozenge – 45°C in 12.3M acid, \blacktriangle – 60°C in 12.3M acid

Leaching – Fe³⁺ results

Fe³⁺ ions concentration in leachate after leaching experiments with HNO₃; Particle size (filled markers -100 - 150µm; open markers - 600 µm): • – 45°C in 6.7M acid, \blacksquare – 60°C in 6.7M acid, \blacklozenge – 45°C in 12.3M acid, \blacktriangle – 60°C in 12.3M acid

Extraction – Nd³⁺ results

Distribution of Nd³⁺ ions in extraction experiments using HDEHP in n-dodecane; • – 0.5M HDEHP (10 ml), • – IM HDEHP (10 ml), \circ - 0.5M HDEHP (100 ml), \Box – IM HDEHP (100 ml).

Extraction – Fe³⁺ results

Distribution of Fe³⁺ ions in extraction experiments using HDEHP in n-dodecane; • – 0.5M HDEHP (10 ml), • – IM HDEHP (10 ml), \circ - 0.5M HDEHP (100 ml), \Box – IM HDEHP (100 ml).

Extraction – results

Recovery of Nd³⁺ and Fe³⁺ ions at a given HDEHP concentration

lon	Scale	[HDEHP]/M	Recovery/%
Nd ³⁺	Small scale		77.82 – 99.99
		0.5	73.00 – 79.42
	Large scale	I	65.21 – 86.68
		0.5	62.33 – 70.95
Fe ³⁺	Small scale	l	1.23 – 1.89
		0.5	3.52 – 8.02
	Large scale	I	0.69 – 1.23
		0.5	3.09 – 6.68

Precipitation

Recovery of Nd³⁺ ions obtained after precipitation processes at a given HDEHP concentration (M) and various oxalic acid (OA) to organic phase (OP) volume ratios.

[HDEHP]/M	OA:OP ratio	Recovery of Nd ³⁺ /%	
	1:1	71.18 ± 0.10	
	2:1	90.86 ± 0.23	
0.5	5:1	95.54 ± 0.12	
	10:1	96.37 ± 0.13	
	1:1	70.43 ± 0.11	
1	2:1	90.59 ± 0.34	
–	5:1	95.39 ± 0.22	
	10:1	97.22 ± 0.09	

Conclusions

- Optimal leaching conditions: 100-150 μ m & 12.3M HNO₃ at 60°C for 24 hours.
- HDEHP was proven a good extractant.
- Precipitation with saturated oxalic acid solution showed > 95% recovery of Nd³⁺ ions using precipitant-to-extractant ratios above 5:1.
- Upscaling of the process is possible.

THANK YOU

Hydrometallurgy – chemistry of the process

Ranges of concentrations of elements in NdFeB magnets ^[4,5,6]

Fe ³⁺	Nd ³⁺	Dy ³⁺	Pr ³⁺	B ³⁺	Sm ³⁺
~59-69%	~22-33%	~0.5-5%	~ -7%	~I-2.5%	~0.6-1.6%

$$RE + 3H^+X^-_{(aq)} \rightarrow RE^{3+}_{(aq)} + 3X^-_{(aq)} + 1.5H_{2(g)}$$

$$RE^{3+}_{(aq)} + 3H^+Y^-_{(org)} \to RE^{3+}Y^-_{3(org)} + H^+_{(aq)}$$

$$2RE^{3+}Y_{3(org)}^{-} + 3C_{2}H_{2}O_{4(aq)} \rightarrow RE_{2}^{3+}(C_{2}O_{4})_{3(aq)}^{2-} + 6H^{+}Y_{(org)}^{-}$$

[4] Gruber, V., & Carsky, M. (2020). South African J. Chem. Eng., 33, 35–38.
[5] Lee, C.-H., Chen, Y.-J., Liao, C.-H., Popuri, S. R., Tsai, S.-L., & Hung, C.-E. (2013), Metall Mater Trans A, 44(13), 5825–5833.
[6] Reisdörfer, G., Bertuol, D., & Tanabe, E. H. (2019). Minerals Eng., 143, 105938.