

Scientific review of marine plastic pollution in South Africa Land-based sources and pathways of marine plastics in a South African context

Green HD-PE microspheres

Introduction

What is plastic?

Status quo

The plastics industry in South Africa The South African recycling industry Sources:

- Informal Settlements
- Wear
- Industry
- Other

Pathways:

- Processes
- Air
- Waterways
- Sinks
- Soil

Cycles

Chemicals in Plastics

Uncertainties
Evidence gaps
Implications

Outline

Plastic overview

"...include synthetic (fossil fuel derived) and or natural organic (biomass derived) polymers that have the abilities to be formed into desired shapes and forms"

Some Advantages

- o Low cost
- Contributes to food security
- Safe transport of liquid and gasses
- Make vehicles lighter and more fuel efficient
- Medical, electronic and scientific equipment
- Versatile manufacturing small sizes

Plastic overview

Type of polymer	Density (g/cm ⁻³)	Common uses
Natural rubber	0.29	Vehicle tyres
Polyethylene* - low density	0.91 - 0.93	Plastic bags, outdoor furniture
Polyethylene* - high density	0.94 - 0.97	Bottles, pipes
Polypropylene	0.85 - 0.94	Rope, bottle caps, gear, strapping
Polystyrene – expanded	0.016 - 0.36	Cool boxes, floats, cups
Polystyrene	0.96 - 1.05	Utensils, containers, microbeads
Polystyrene - high impact	1.04	Shelves, printed graphics
Polyamide – Nylon	1.12 - 1.14	Fishing nets, rope
Polycarbonate (bisphenol-	1.2	CDs, glass alternative, lenses
A)		
Polyurethane	1.2	Foams
Metacrylate (acrylic)	1.19	Alternative for plate glass
Cellulose acetate	1.28	Cigarette filters, fabric fibre
Cellulose nitrate	1.35	Printing inks, nail polish, foil
Polyvinyl chloride	1.38	Film, pipe, containers
Polylactic acid	1.21 - 1.43	Packaging, cups
(biodegradable)		
Polyethylene terephtelate	1.34 - 1.39	Bottles, strapping bands
Melamine	1.57	Flooring, dinnerware, dry boards
Distilled water	1.00	
Brackish water	1.005 – 1.012	
Sea water	1.025 – 1.027	

Circular economy Leaks

SA Plastic industry

- Market size: R67 billion
- Provides **income** to more than 58 100 people
- 44.8% of plastic globally, 44.8% locally used for **packaging**
- Demand is affected by population growth
- 1 492 000 tons of virgin plastic
- 313 780 tons of **recycled plastic**
- 27.11 kg **per person**
- Zero plastic to **landfill** by 2030

SA Recycling industry

70% post-consumer LDPE, LLDPE, PET, HDPE, PP Recycling challenges: Transport & cleaning

Recycle rates:

SA 2018: **46.3%**

Europe 2018: **31.1%**

6.7%

Recovery rate: Volume:

Contribute to marine plastic pollution:

11th, adding 90 000 and 250 000 tonnes, 56% mismanaged waste

Informal Settlements

Informal waste dump in Vanderbijlpark area, close to Vaal river

91% low income households
Direct discharges to soil and rivers
Lack of infrastructure and services

Pathways

Three main drivers of plastic transport and cycling:

- Breakdown
- Biofouling
- Sorption

Transport and movement:

- Air
- Land
- Waterways

Generic land-based Sources and Pathways of Macroplastics

Generic land-based Sources and Pathways of Microplastics

Air

- Found everywhere
- > 11 000 particles / m² / day
- Namaqualand

Waterways

Rivers are the main contributors to the marine plastic load

- Wastewater treatment plants
- Sewers
- Pipelines to the seas

Sinks

Sediments of rivers, weirs, impoundments, and estuaries

Waste dumps, sludge, discard, return to beaches

Cycles

Plastic now considered part of biogeochemical cycle

- Additives
- **Pollutants**
 - Freshwater
 - Soils
 - Contamination
 - Air?
- Table?

Chemicals in plastic

Illegal dumping: cattle eating plastic

Uncertainties

- Inland data scarce
- Association with socio-economic conditions and behaviour
- Sinks
- Mobility (missing plastics)
- Fibres and beads
- Aerial transport to sea
- Polymer composition
- Additives and pollutants
- Microbial resistant genes

Evidence gaps

- Ecotoxic effects
- WWTP effectiveness and sludge management
- Rubber and tyre wear
- Microbeads (where do they go?)
- Nanoplastics
- Aerial transport
- Pollutants
- Seasonal effects
- Sinks

Implications

- Prevent leakage to the environment
- Improve waste removal and waste management
- Development of standardised waste monitoring methods
- Move towards a circular economy
- Risk communication and education

Improvements to MS

- A number of edits and typo's
- Table on additives and accumulated pollutants
- Reduction in repetitions
- New references (toxic effects..)
- Reference to following articles in this series

